FAQ – How to make complete allowable span tables with SandStat?

SandStat has the ability to calculate complete allowable span tables. This module is not included in the basic version of SandStat and must be activated in the licence file.

General procedure

*) Note: the inputs in those masks will not be considered at the span table iteration because the static system and the loads will be generated new.

Important note: the results will be written as txt-file. For the file name the actual date and time is used. At certain date formats (f.ex. "dd/mm/yyyy") at Microsoft Windows, it may be possible that there are error messages. The preferred format is "dd.mm.yyyy".

Comment

After choosing the sandwich panel and definition of the static system and loads, you can choose at the menue \exists "design" the iteration menu with button "allowable span <u>c</u>omplete" (perhaps after definition and adjustment of the load factors).

Please note that the specified system as well as generated loads are not taken into account in the span calculation.

Project control	
You have defined the following system. Do you wa somet	nt to start the design, or do you want to change hing?
static system 5.0° 1 2 3 4 1 2 3 4 14.0 cm 16.0 cm 14.0 cm 1+ 4.0 cm 4.0 cm 4.0 cm 4 3.00 m 4.0 cm 4.0 cm 4.0 9.00 m -0.0 cm 4.0 cm	project datas foof-panel of 3 spans, parallel to the roof pitch of 5,0° (8,7%)installed. manufacturer: Muster / Sample sandwich panet. Muster-Dach/Sample-roof 140 0,63 0,50 core material: PUR Basic calculation principle: Muster/Sample loads permanent load g vert. over I = 0,140 kN/m ² snow s vert. over I = 0,645 kN/m ² wind suction over I: ws = -0,300 kN/m ²
M = 1:142	design by DIN EN 14509 with german techn. Approval
allowable span allowable load allowable span complete table of loads	Load factors and combination coefficients DIN EN 1990/NA:2010-12, Tab. NAA.1.2(B) DIN EN 1990/NA:2010-12: Kategorie H, Orte bis zu NN +1000 m Joad factors
	<u>d</u> esign <u>c</u> hange

In the following template, you can define the iteration parameters:

- location of the result files
- number of span(s)
- regulation of the colour group and the basis (see page 6)
- what kind of loads shall be arranged (wind pressure, wind suction, wind suction for fasteners as well as at roof panels snow loads and "delta g")
- possibly deflault maximum support width at pressing loads (see notes at page 7)
- possibly default maximum tension strength at connection with the subconstruction at suction loads (see notes at page 7)
- information on the consideration of deflections
- specification of further constant loads (see notes page 8)
- selection of calculating sandwich panels

ieneral	Snow	Wind pressure	Wind suction	Wind suction for fasteners	Delta g	Konstante
storage path	ì					
C:\Users\f	isch\Documents\Mu	ster-Stützweitentabelle	n			
number of sp	ans	colour	group	. basic principle of co	blour	
1	to 3	20 되 20 되 20 되	olour group I Nour group II	 german technic special tempera 	al approval itures	
			iour group in	Dutch standard		
pressing loa	ids I v snow V wind pre	ssure		ting loads vind suction wind suction for faste	mers	
ma <u>x</u> imum sup at end suppo at intermedia	pport width rt a = e support b =	4,00 cm 6,00 cm		support reactions N _{Rd, end support} N _{Rd, intermediate support}	= prt =	kN/m i kN/m
<u>d</u> eflections	Yes	st st	oan deflections			
	C No	_	postive deflections negative deflections	= L _i / [] = L _i / []	200	
	C Yes and N	lo	ong term loads postive deflections negative deflections	= L _i / [= L _i / [100	
Muster-Dach/S	ample-roof 140 0,63 (),50		•		(<u>C</u> hanging

When the load type is selected at the first slide, the accordant slide for input of the values is unlocked.

The snow load as well as "delta g" is only available at iteration of roof elements. The load type live load is in process.

General Snow	Wind pressure	Wind suction	Wind suction for fasteners	Delta g	Konstanter
generation number of snow loads initial value snow loads grading steps	15 0,00 0,25	kN/m² kN/m²		lete load generation	
snow loads s 01 = 0 kN/m² s 02 = 0.25 kN/m² s 03 = 0.5 kN/m² s 04 = 0.75 kN/m² s 05 = 1 kN/m² s 05 = 1 kN/m² s 06 = 1.25 kN/m² s 07 = 1.5 kN/m² s 08 = 1.75 kN/m² s 09 = 2 kN/m² s 10 = 2.25 kN/m² s 11 = 2.5 kN/m² s 12 = 2.75 kN/m² s 13 = 3 kN/m² s 14 = 3.25 kN/m² s 15 = 3.5 kN/m²					

At the relevant slide the load can be generated by defining the numbers of loads, the beginning value and the grading steps. With the click on "load generation" the single load values will be generated. Successively single values can be changed manually. The complete generation values are removed by selecting "delete load generation".

Tip: A load value of 0.0 kN/m² should be avoided in order not to cause numerical discontinuities. In this case, you can manually change the automatically generated value to e.g. 0.01 kN/m² afterwards.

Remarks to input datas

- It is only possible to calculate systems with equal span lengths.
- The load is constant over the span.
- At temperature loads the following bases are lodged:

German technical approval

Season	Insolation	Analysis of	Analysis of serviceability			
		stability		R _G "		
		T₁[℃]		[%]	T₁[℃]	
Winter		-20	all	90-8	-20	
incl. snow load		0	all	90-8	0	
Summer	direct	+80	 	90-75 74-40 39-8	+55 +65 +80	
	indirect***	+40	all	90-8	+40	
 I = very bright R_G: Reflection fa the Hunter-L-a-t Direct insolation front of the same 	II = bright III actor related to bari method.) " on a wall is under dwich wall (e.g. ofte	= dark um sulphate = 100%. (rstood to apply to the ca n applied for cold store	The stated brightness ase of a curtain façad s.	s values are e with rear	based on ventilation in	

Special temperatures

manual input of the user

3. besondere Temperaturen — 🗆 🗙												
		Son	nmer			Wi	nter					
alle Angaben in ["U]	TfN Aussen	lW Innen	Gfl Aussen	√W Innen	ohne 9 Aussen	ichnee Innen	mit S Aussen	chnee Innen				
Farbgruppe I	80	25	55	25	-20	20	0	20	Γ			
Farbgruppe II	80	25	65	25	-20	20	0	20				
Farbgruppe III	80	25	80	25	-20	20	0	20	Γ			
	Abbrechen Ok											

Dutch standard

As german technical approval, but at summer at serviceability limit state:

- Colour group I: 50°C
- Colour group II: 60°C
- Colour group III: 75°C temperature inside summer and winter + 20°C

- If there are multiple elements to calculate, the respective self-weight read out of the element database will be used.
- At the arrays concerning the support width the values for support widths can be given. Those values will be considered at pressing loads (wind pressure as well as "delta g" and snow at roof panels) load case snow and wind pressure.
- The maximum support reactions are needed at iteration of wind suction for fasteners. At the equal arrays the maximum tension force for the connection with the sub-construction as design-value N_{Rd} - separated for end and intermediate support - can be declared. This verification is particularly required for wall elements with hidden fixing.

If no connection with the sub-construction shall be considered, the check mark at "wind suction for fasteners" has to be deactivated. If applicable the limitation of the span length can be made only because of the value at intermediate support or at end support.

When considering several sandwich panels, there is no differentiation of the N_{Rd} values; the specified values are used for all selected sandwich panels. It follows that when calculating several element types with different N_{Rd} values to be applied, these must be calculated individually (or in groups) by calling up this mask several times.

 At slide "Konstanten", further constant loads can be defined that are not applied iteratively. These loads are then superimposed with the variable loads.

It is also possible to specify a live load that is constant over the span length.

Furthermore, a man load can be defined, which can be applied with a predefined load (usually 1,0 kN) at a defined point in the span. In this case, the load point is specified in relation to the span length from 0 (at left support) via 0,5 (in the middle of the span) up to 1,0 (at right support) with any value between 0 and 1,0.

At this point we would like to point out that when applying live loads and/or man loads, the combination coefficients must be adjusted so that, if necessary, a superposition with other load cases is also carried out.

The additional "more self-weight" acts like the dead selfweight of the sandwich panel and is always applied in the consideration. The "further self-weight" from possibly removable dead loads, on the other hand, is not taken into account when superposing wind suction loads.

General	Snow	Wind pressure	Wind suction	Wind suction for fasteners	Delta g	Konstante
Constant L	oads					
mor	e self-weight	+{	g =	0 kN/m²		
furth	er self weight	Δε	g = [0 kN/m²		
sno	w load		s =	0 kN/m²		
wind	f pressure	wo	1 =	0 kN/m²		
live	load	1	o =	0 kN/m²		
ma	ın load	n	n =	0 KN		
£	x_d x_m =	x,	m = 0, d =	5 [0, 1]		
Pos	tion within first field					
			r	1		

		Ý	Y	Y Auffred and fair for Y		Y
General	Snow	Wind pressure	Wind suction	fasteners	Delta g	Konstante
storage path	I					
C:\Users\fi	isch\Documents\Mu	ster-Stützweitentabelle	'n			
number of sp	ans	colour	group			
				basic principle of co	blour	
		I co	olour group l	 german technic 	al approval	
1	to 3	C cc	lour group II	C special tempera	atures	
		▼ co	lour group III	C Dutch standard		
load						
pressing loa	ids		lif	ting loads		
🔲 🔲 delta g	9 🔽 snow			vind suction		
	🔽 wind pre	essure		wind suction for faste	eners	
at end suppo	rta =	4,00 cm		N _{Rd, end} support	=	kN/m <u>i</u>
at intermediat	e support b =	6,00 cm		NRd, intermediate suppo	ort =	kN/m
at intermediat	te support b =	6,00 cm		Rd, intermediate suppo	ort =	kN/m
at intermediat deflections	e support b =	6,00 cm	an deflections	NRd, intermediate suppo		kN/m
at intermediat	e support b =	6,00 cm	an deflections	NRd, intermediate suppo	ort =	kN/m
at intermediat	re support b =	6,00 cm	an deflections short term loads postive deflections	= L _i / [200	kN/m
at intermediat	re support b =	6,00 cm	an deflections hort term loads postive deflections negative deflections	$ \mathbf{N}_{Rd} \text{ intermediate support}$ $= \mathbf{L}_{i} / \boxed{\mathbf{I}}$ $= \mathbf{L}_{i} / \boxed{\mathbf{I}}$	200	kN/m
at intermediat	re support b =	[6,00] cm	van deflections whort term loads postive deflections negative deflections ong term loads	$ \mathbf{N}_{Rd} \text{ intermediate support}$ $= L_{i} / \boxed{$ $= L_{i} / $	200	kN/m
at intermediat	re support b =	6,00 cm	han deflections what term loads postive deflections negative deflections ong term loads postive deflections	$ \mathbf{N}_{Rd} \text{ intermediate support}$ $= L_{i} / $ $= L_{i} / $ $= L_{i} / $	200	kN/m
at intermediat	re support b =	6,00 cm	an deflections whort term loads postive deflections negative deflections ong term loads postive deflections negative deflections	$ \mathbf{N}\mathbf{R}\mathbf{d}_{i} \text{ intermediate support}$ $= \mathbf{L}_{i} / \boxed{:}$ $= \mathbf{L}_{i} / \boxed{:}$ $= \mathbf{L}_{i} / \boxed{:}$ $= \mathbf{L}_{i} / \boxed{:}$	200 200 100	kN/m
at intermediat	re support b =	6,00 cm	an deflections whort term loads postive deflections negative deflections ong term loads postive deflections negative deflections	$ \mathbf{N}\mathbf{R}\mathbf{d}_{i} \text{ intermediate support}$ $= \mathbf{L}_{i} / \begin{bmatrix} \mathbf{I}_{i} \\ \mathbf{I}_{i} \end{bmatrix}$ $= \mathbf{L}_{i} / \begin{bmatrix} \mathbf{I}_{i} \\ \mathbf{I}_{i} \end{bmatrix}$ $= \mathbf{L}_{i} / \begin{bmatrix} \mathbf{I}_{i} \\ \mathbf{I}_{i} \end{bmatrix}$	200 200 100	kN/m
at intermediat	re support b =	6,00 cm	pan deflections short term loads postive deflections negative deflections ong term loads postive deflections negative deflections	$ \mathbf{N}\mathbf{R}\mathbf{d}_{i} \text{ intermediate support}$ $= \mathbf{L}_{i} / \begin{bmatrix} \mathbf{I}_{i} \\ \mathbf{I}_{i} \end{bmatrix}$ $= \mathbf{L}_{i} / \begin{bmatrix} \mathbf{I}_{i} \\ \mathbf{I}_{i} \end{bmatrix}$ $= \mathbf{L}_{i} / \begin{bmatrix} \mathbf{I}_{i} \\ \mathbf{I}_{i} \end{bmatrix}$	200 200 100	kN/m
at intermediat	re support b =	[6,00] cm	an deflections short term loads postive deflections negative deflections ong term loads postive deflections negative deflections	$ \mathbf{N}_{Rd} \text{ intermediate support}$ $= \mathbf{L}_{i} / \begin{bmatrix} \mathbf{I}_{i} \\ \mathbf{I}_{i} \end{bmatrix}$ $= \mathbf{L}_{i} / \begin{bmatrix} \mathbf{I}_{i} \\ \mathbf{I}_{i} \end{bmatrix}$	200 200 100	kN/m
at intermediat	re support b =	[6,00] cm [st [st [st] [st] [st] [st] [st] [st] [han deflections whort term loads postive deflections negative deflections ong term loads postive deflections negative deflections	$ \mathbf{N}\mathbf{R}\mathbf{d}_{i} \text{ intermediate support}$ $= \mathbf{L}_{i} / \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix}$ $= \mathbf{L}_{i} / \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix}$ $= \mathbf{L}_{i} / \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix}$	200	kN/m
at intermediat	e support b =	[6,00 cm [8,00 cm [8] [8] [9] [9] [9] [9] [9] [9] [9] [9] [9] [9	an deflections short term loads postive deflections negative deflections ong term loads postive deflections negative deflections	$ \mathbf{N}_{Rd} \text{ intermediate support}$ $= \mathbf{L}_{i} / \begin{bmatrix} \mathbf{I}_{i} \\ \mathbf{I}_{i} \end{bmatrix}$ $= \mathbf{L}_{i} / \begin{bmatrix} \mathbf{I}_{i} \\ \mathbf{I}_{i} \end{bmatrix}$ $= \mathbf{L}_{i} / \begin{bmatrix} \mathbf{I}_{i} \\ \mathbf{I}_{i} \end{bmatrix}$	200	kN/m

If the load iteration tables shall be generated for several sandwich elements, you can choose those elements in the lower part of the mask.

Muster-Dach/Sample-roof 140 0,63 0,50 Muster-Dach/Sample-roof 160 0,63 0,50	
	A <u>b</u> brechen

Please notice, that there are only the sandwich panels available who are included at the manufacturer you have chosen before. It is not possible to calculate elements from different manufacturer in one calculation. For multiple

selection please use the windows function with STRG-button (not succeeded) as well as the Shift-button (succeeded).

If all inputs are made at side "General", you can start the calculation by clicking on button "Ok". Please notice, that the calculation period may be very long especially when many options or sandwich panels are chosen. Depending on the performance of the computer the calculation can takes more than several hours while the computer may be too slow for other applications. Therefore please unlock only some options at the first time. Maybe it is also possible for you to make the calculation over night or to use computer who isn't use otherwise.

SandStat starts the iteration with the load you specify and with a span-length of 1 m. This span-length is increased or decreased depending on the maximum utilisation. When a utilisation of 99,8% to 100,4% is reached, the iteration is terminated. If this condition (maximum utilisation between 99,8% and 100,4%) has not been reached after 100 iteration steps, the iteration is terminated and noted accordingly in the output of the results.

After the end of each iteration step the next load will be applied and the iteration starts again until all loads are calculated.

Output of results

The output of the results is done in several files that are located in the specified storage location:

- "panel name parameters.txt"
- "StuetzW.Log"
- "Schnee panel name.txt"
- "Table snow-panel name.txt (if snow was considered)
- "Winddruck panel name.txt"
- "Table wind pressure panel name.txt" (if wind pressure was considered)
- "Windsog panel name.txt"
- "Table wind suction panel name.txt" (if wind suction was considered)

etc. for the selected load type ...

At the following pages the single results files will be regarded and explained at an example calculation.

1) Parameters for calculation of allowable span table at file *"sandwich panel – parameters.txt"*

At text-file "*sandwich panel* – parameters.txt" the basic values for the calculation are written (f.ex. the characteristics of the sandwich element). The file can be open with the windows program WordPad or with another general word processing program like Microsoft© Word.

Consecutively an example with the file "MusterDachSampleroof 140 0_63 0_50 - parameters.txt":

1	
	iteration of allowable span length for panel Muster-Dach/Sample-root 140 0,63 0,50
	manufacturer musier / Sample
	tecrinical approvarical culation principle muster/sample
	Tool pilch 5,0°
	Velsion 4.08.080 horizonia e facetiar et 21.10.2021
	set point to inkings
	at et in support i NRd = 0,00 kN
	set point to support whith.
	end support = 4.0 cm
	interneulate support = 0,0 cm
	PANEL SPECIFICATION
	sandwich panel
	overal depth of the papel $D = 140$ mm
	distance between centroids of faces e =108.593 mm
	upper lever arm R1 = 44.5168 mm
	lower lever arm R2 = 64,0762 mm
	self weight g = 0,141 kN/m ²
	core material
	material PUR
	shear modulus G_c = 3,7 N/mm ²
	creep coefficient psi_t self-weight = 3,5
	creep coefficient psi_s snow = 2,5
	shear strength $f_{\rm LCV}$ = 0,12 N/mm ²
	shear strength t_CV long term = 0,06 N/mm ²
	compression strength $1_{CC} = 0,12 \text{ W/mm}^2$
	parameter of support reaction capacity $\mathbf{k} = 0$
	unnar face laver-
	upper race ages. material S350CD
	modulus of elasticity E E1 = 210000 N/mm ²
	vield strength f F11 = 350 N/mm ²
	coefficient of thermal expansion alpha $F1 = 0.000012 1/^{\circ}$
	nominal thickness of face sheet t_nom = 0,63 mm
	design thickness $t_1 = 0.56$ mm
	cross-sectional area $A_1 = 6,343187 \text{ mm}^2$
	moment of inertia I_1 = 13,31376mm^4
	distance between centroids of faces d_11 = 30,332 mm
	distance between centroids of faces d_12 = 9,468 mm
	design resistance strength of the face layers
	sigma_11_span_lower 20°C = 296 N/mm ²
	sigma_11_support_lower 20°C = 296 N/mm ²
	sigma_11_span_higher 20°C = 296 N/mm ²
	sigma_11_support_higher 20°C = 296 N/mm ²

	Invertial S350GD modulus of elasticity E_F2 = 210000 N/mm yield strength f_F12 = 350 N/mm ² coefficient of thermal expansion alpha_F2 = nominal thickness of face sheet 1_nom = design thickness t_2 = 0,435 mm cross-sectional area A_2 = 4,390663 mm ² moment of inertia I_2 = 0mm ⁴ distance between centroids of faces d_21 = distance between centroids of faces d_22 = design resistance strength of the face layers sigma_11_support_lower 20°C = sigma_11_support_lower 20°C = sigma_11_support_higher 20°C =	² 0,000012 1/° 0,5 mm 2 0,55 mm 0,55 mm 155,1 N/mm ² 140,1 N/mm ² 131,9 N/mm ² 119,1 N/mm ²
	material safety factors:	
	at ultimate limit state	11
	wrinkling of the upper face layer in span =	1,15
	wrinkling of the upper face layer at an interme	ediate support = 1,15
	wrinkling of the lower face layer in the span	= 1 15
	wrinkling of the lower face layer at an interme	ediate support = 1,15
	shear of the core = 1,36	
	snear failure of a profiled face =	1,1
	support reaction capacity of a profiled face	= 1,1
	at serviceability limit state	1
	wrinkling of the upper face layer in span =	1.03
	wrinkling of the upper face layer at an interme	ediate support = 1,03
	yielding of the lower face layer =	1 1.02
	wrinkling of the lower face layer at an interme	ediate support = 1,03
	shear of the core = 1,1	
	shear failure of a profiled face =	1
	support reaction capacity of a profiled face	= 1
	combination coefficient: psi 0 for snow $= 0.5$	
	psi_0 for wind = 0,6	
	psi_0 for temperature = 0,6	
	psi_0 for temperature with index a = 0	1
	psi_1 for snow = 0,2	
	psi_1 for snow index b = 0,2	
	psi_i for wind index b = 0.2	
	psi_1 for temperature = 0,5	
	psi_1 for temperature with index a =	0
	$psi_2 tot show = 0$ $psi_2 for wind = 0$	
	psi_2 for temperature = 0	
	psi_2 for temperature with index a =	1
	psi_z tot live toad = 0	
	load factors: DIN EN 1990/NA: 2010-12, Tab.	. NA.A.1.2(B)
	permanent action unfavorable =	1,35
	permanent action favorable = 1	
	variable actions $= 1,5$	
	creep effects = 1	
	serviceability limit state:	
Į		
	permanent actions = 1	
	permanent actions = 1 variable actions = 1 termperature actions = 1	
	permanent actions= 1variable actions= 1termperature actions= 1creep effects= 1	

```
maximum deflection:
 With maximum deflection
  short term positive
                                    = L/200
                                    = L/200
= L/100
  short term negative
  long term positive
                                    = L/100
  short term negative
Temperatures:
colour group 1
 summer, ULS, outside: 80° K
summer, ULS, inside: 25° K
summer, SLS, outside: 55° K
summer, SLS, inside: 25° K
  winter without snow, ULS, outside: -20° K
  winter without snow, ULS, inside: 20° K
  winter with snow, ULS, outside: 0° K
  winter with snow, ULS, inside: 20^\circ\mbox{ K}
Temperatures:
colour group 2
summer, ULS, outside: 80° K
  summer, ULS, inside: 25° K
  summer, SLS, outside: 65° K
  summer, SLS, inside: 25° K
  winter without snow, ULS, outside: -20° K
 winter without snow, ULS, inside: 20° K
winter with snow, ULS, outside: 0° K
winter with snow, ULS, inside: 20° K
Temperatures:
colour group 3
  summer, ULS, outside: 80° K
 summer, ULS, inside: 25° K
summer, SLS, outside: 80° K
summer, SLS, inside: 25° K
winter without snow, ULS, outside: -20° K
  winter without snow, ULS, inside: 20° K
  winter with snow, ULS, outside: 0° K
  winter with snow, ULS, inside: 20° K
```

Please check this information critically.

2) Single results of the individual loads using the example of snow load

At the result-file "Schnee-*panel name*.txt" the single results are written for this load case. The file can be open with the windows program WordPad or with another general word processing program like Microsoft© Word.

It is possible to copy the results into Microsoft Excel © to obtain a clear tabular presentation (separator = tabulator).

Felder	Stützweite	EnAuflBreite	ZwAuflBreit	e g	dg	S	wd	wsa	WSS	dTSG
1	9270	4	6	0.141	0	0	0	0	0	20
1	9522	4	6	0,141	0	0.25	0	0	0	30
1	8522	4	0	0,141	0	0,25	0	0	0	30
1	7496	4	0	0,141	0	0,5	0	0	0	30
1	5360	4	6	0,141	0	0,75	0	0	0	30
1	4171	4	6	0,141	0	1	0	0	0	30
1	9270	4	6	0,141	0	0	0	0	0	40
1	8522	4	6	0,141	0	0,25	0	0	0	40
1	7496	4	6	0,141	0	0,5	0	0	0	40
1	5360	4	6	0,141	0	0,75	0	0	0	40
1	4171	4	6	0,141	0	1	0	0	0	40
1	9270	4	6	0,141	0	0	0	0	0	55
1	8522	4	6	0,141	0	0,25	0	0	0	55
1	7496	4	6	0,141	0	0,5	0	0	0	55
1	5360	4	6	0,141	0	0,75	0	0	0	55
1	4171	4	6	0,141	0	1	0	0	0	55
2	12879	4	6	0,141	0	0	0	0	0	30
2	9353	4	6	0,141	0	0,25	0	0	0	30
ATCT	dTM	dTM				50	aul 6	TENNAL Cimmo	TENNAL Tau	TENNAL ALLEL A
uisi	aiw	arwms	IVI	XIVI	p	FG	zui_i	The vv_signa	Thvv_Tau	TINW_AUII_A
55	-40	-20	0	0	0	1	200	0,3694	0,2572	0,25
55	-40	-20	0	0	0	1	200	0,6296	0,4332	0,6825
55	-40	-20	0	0	0	1	200	0.8164	0.6258	0.9986
55	-40	-20	0	0	0	1	200	0,6968	0,5953	0,9988
55	-40	-20	0	0	0	1	200	0,6495	0,5647	0,9988
55	-40	-20	0	0	0	2	200	0,3694	0,2572	0,25
55	-40	-20	0	0	0	2	200	0,6296	0,4332	0.6825
55	-40	-20	0	0	0	2	200	0.8164	0,6258	0.9986
55	-40	-20	0	0	0	2	200	0.6968	0.5953	0.9988
55	-40	-20	0	0	0	2	200	0.6495	0.5647	0.9988
55	-40	-20	0	0	0	3	200	0.3694	0.2572	0.25
55	-40	-20	0	0	0	3	200	0,6296	0,4332	0,6825
55	-40	-20	0	0	0	3	200	0.8164	0.6258	0.9986
in di	-40	-20	0	0	0	3	200	0.6968	0.5953	0.9988
55		-	~	~	~			-,		
55 55	-40	-20	0	0	0	3	200	0.6495	0.5647	0,9988
55 55 55	-40	-20	0	0	0	3	200 200	0,6495	0,5647	0,9988

The following is an excerpt from the sample calculation....

TfNW_Aufl_B	GfNW_Sigma	GfNW_Tau	GfNW_Aufl_A	GfNW_Aufl_B	GfNW_Ver	Bef_End	NRd_End	Bef_Zw	NRd_Zw
0	0,2414	0,1223	0,1498	0	0,9982	0	0	0	0
0	0,4047	0,2375	0,3818	0	0,9994	0	0	0	0
0	0,5237	0,3371	0,5506	0	0,8896	0	0	0	0
0	0,4578	0,3152	0,5472	0	0,54	0	0	0	0
0	0,4364	0,2944	0,5453	0	0,389	0	0	0	0
0	0,2414	0,1319	0,1498	0	0,9982	0	0	0	0
0	0,4047	0,2375	0,3818	0	0,9994	0	0	0	0
0	0,5237	0,3371	0,5506	0	0,8896	0	0	0	0
0	0,4578	0,3152	0,5472	0	0,54	0	0	0	0
0	0,4364	0,2944	0,5453	0	0,389	0	0	0	0
0	0,2414	0,1464	0,1498	0	0,9982	0	0	0	0
0	0,4047	0,2375	0,3818	0	0,9994	0	0	0	0
0	0,5237	0,3371	0,5506	0	0,8896	0	0	0	0
0	0,4578	0,3152	0,5472	0	0,54	0	0	0	0
0	0,4364	0,2944	0,5453	0	0,389	0	0	0	0
0,4631	0,9982	0,1604	0,216	0,4434	0,8031	0	0	0	0
0,9988	0,9811	0,2681	0,3277	0,7584	0,5147	0	0	0	0

Aufl1_TfNW Aufl2_TfNW Aufl3_TfNW Aufl4_TfNW Aufl1_GfNW Aufl2_GfNW Aufl3_GfNW Aufl4_GfNW NSd_End NSd_Zw

1	1	0	0	0,6	0,6	0	0	0	0
2,73	2,73	0	0	1,53	1,53	0	0	0	0
3,99	3,99	0	0	2,2	2,2	0	0	0	0
4	4	0	0	2,19	2,19	0	0	0	0
4	4	0	0	2,18	2,18	0	0	0	0
1	1	0	0	0,6	0,6	0	0	0	0
2,73	2,73	0	0	1,53	1,53	0	0	0	0
3,99	3,99	0	0	2,2	2,2	0	0	0	0
4	4	0	0	2,19	2,19	0	0	0	0
4	4	0	0	2,18	2,18	0	0	0	0
1	1	0	0	0,6	0,6	0	0	0	0
2,73	2,73	0	0	1,53	1,53	0	0	0	0
3,99	3,99	0	0	2,2	2,2	0	0	0	0
4	4	0	0	2,19	2,19	0	0	0	0
4	4	0	0	2,18	2,18	0	0	0	0
1,39	2,78	1,39	0	0,86	2,66	0,86	0	0	0
3	5,99	3	0	1,31	4,55	1,31	0	0,15	0

Comment to the name of columns:

Felder	 number of span (static system) 	
Finzelstützweite	- allowable single span length loads [mm]	
EnAuflBreite	 preset end support width [mm] 	
ZwAuflBreite	- preset intermediate support width [mm]	
	- self-weight of sandwich panel [kN/m ²]	
y da	- Self-weight of Sandwich parter [kiv/hir]	
uy	- extra Sell-weigin [KIV/II-]	
S	- Show load [KIV/II12]	
wa	- wind pressure [kiv/m²]	
wsa	- wind suction for sandwich panel [kiN/m²]	
WSS	 wind suction for fasteners [kN/m²] 	
dTSG	 temperature difference at summer serviceability 	limit state
dTST	 temperature difference at summer ultimate limit s 	state
dTW	 temperature difference at winter 	
dTWms	 temperature difference at winter with snow 	
Μ	- men load [kN]	
хM	- distance of men load related to the span length	
p	- live load [kN/m ²]	
FG	- colour aroup	
zul f	- limit of deflection	
201_1		
Tfow Sigma	- course of evaluation at LILS for normal stresses	at face lavers
Tfow Tau	- course of evaluation at LILS for shear stresses a	t core
Tfow Aufl A	course of evaluation at ULS for pressure at and	
Thw_Aun_A	- course of evaluation at ULS for pressure at interm	support
TITW_AUII_D	- course of evaluation at OLS for presure at intern	eciale support
Cfour Sigmo	source of evaluation at CLC for normal stranges	at face lavore
Giriw_Sigina	- course of evaluation at SLS for normal stresses	
Ginw_rau	- course of evaluation at SLS for shear stresses a	i core
Gfnw_AufI_A	- course of evaluation at SLS for pressure at end	support
Gfnw_Aufl_B	 course of evaluation at SLS for pressure at interior 	n. support
Gfnw_Ver	 course of evaluation delfections 	
5 (7)		
BetEnd	 course of evaluation for fasteners at end support 	
NRd_End	 design value for support reactions at end support 	t
BefZw	 course of evaluation for fasteners at intermediate 	e support
NRd_Zw	- design value for support reactions at intermediat	e support
Aufl1_Tfnw	- required support width at 1st support for ULS [cn	n]
Aufl2_Tfnw	- required support width at 2nd support for ULS [c	m]
Aufl3_Tfnw	- required support width at 3rd support for ULS [cr	n]
Aufl4 Tfnw	- required support width at 4th support for ULS Icr	n]
Aufl1 Gfnw	 required support width at 1st support for SLS [cn 	กไ
Aufl2 Gfnw	 required support width at 2nd support for SLS [or 	ml
Aufla Gfnw	- required support width at 2rd support for SLO [or	nl
Aufl/ Cfow	- required support width at thist support for SLS [0]	''] cm]
	- required support width at times support for SLS [[11]
NGd End	aviat, autopart reaction for fiving at and autopart	
NGU_EHU	- exist. support reaction for fixing at end support	ort
INSU_ZW	 exist. support reaction for fixing at interm. supp 	ont

3) Allowable span tables at file "Table – *load case – panel name*.txt"

The allowable span tables are written as results at text-files "Table – *load case - panel name*.txt", divided into the chosen load cases.

The file can be opened with the windows program WordPad or with another general word processing program like Microsoft© Word.

It is possible to copy the results into Microsoft Excel © to obtain a clear tabular presentation (separator = tabulator).

The results are written in table form with the value for load at column and the span, colour group ("FG") and deflection information as row. The span length as results is in unit [m].

In addition to the information on the permissible span, the required support width is also written. This is especially important for the pressing load cases snow, wind pressure and "delta g". Above the span length, the required support width for the end supports is given, below the span length, the required support width for the intermediate supports is given, each in the unit [mm].

The column FG indicates the respective colour group. If a designation "(f)" is added after the colour group indication, the results in this row are with the regard of the deflection.

Consecutively the allowable span table for the example with load case snow:

				/ I	nere s = 0	,25 kN/m ²	2	
Snow - Must	er-Dach/Sam	ple-roof 140 0	.63 0.50	/				
Felder	FG	snow	,,					
			0	0,25	0,5	0,75	1	
			40	40	40	40	40	
1	1(f)		9,27	8,52	7,5	5,36	4,17	
			40	40	40	40	40	
1	2(f)		9,27	8,52	7,5	5,36	4,1	
			40	40	40	40	40	
1	3(f)		9,27	8,52	7,5	5,36	4,17	
			40	40	40	40	40	
2	1(f)		12,88	9,35	5,62	4,02	3,13	
			60	60	60	60	60	
			40	40	40	40	40	
2	2(f)		12,88	9,35	5,62	4,02	3,1	
			60	60	60	60	60	
			40	40	40	40	40	
2	3(f)		12,88	9,35	5,62	4,02	3,1	
~~~~			60	60	60	60	60	
			40	40	40	40	40	
3	1(†)		12,82	9,35	5,62	4,02	3,13	
	m		60	60	60	60	60	
2	2/5		40	40	40	40	- 40	
3			12,85	5,35	5,02	4,02	5,13	
			40	40	40	40	40	
31	3(f)		12.82	9.36	5.62	4.02	3.13	
YUP	5(1)		60	60	60	60	60	
↓ ↓				/				
	\		result:					
Imber of spans			40	support width end support [cm]				
ere n = 3			9 35	span length [m]				
			9.35	span length [m]				

→ "Table-snow-panel name.txt"

number = colour group as well as info on deflection here: colour group II; deflection is taken into account Consecutively the allowable span table for the example with load case wind pressure:

wind pressu	re - Muster	-Dach/Sample-ro	of 140 0,63 0,5	50				
Felder	FG	wind pressure						
			0	0,1	0,2	0,3	0,4	
			40	40	40	40	40	
1	1(f)		9,27	9,27	9,28	9,28	8,92	
			40	40	40	40	40	
1	2(f)		9,27	9,27	9,28	9,28	8,92	
			40	40	40	40	40	
1	3(f)		9,27	9,27	9,28	9,28	8,92	
			40	40	40	40	40	
2	1(f)		12,88	11,04	9,89	8,26	6,69	
	.,		60	60	60	60	60	
			40	40	40	40	40	
2	2(f)		12,88	11,04	9,89	8,26	6,69	
			60	60	60	60	60	
			40	40	40	40	40	
2	3(f)		12,88	11,04	9,89	8,26	6,69	
			60	60	60	60	60	
$\sim$			40	40	40	40	40	
3	1(f)		12,82	12,82	10,78	8,25	6,69	
			60	60	60	60	60	
			40	40	40	40	40	
3	2(f)		12,83	12,84	10,78	8,26	6,69	
			60	60	60	60	60	
			40	40	40	40	40	
3	3(f)		12,82	12,83	10,78	8,26	6,69	
YV			60	60	60	60	60	
+	1							
			result:					
mber of	spans		40	support wi	dth end sui	onort [cm]		
$r_0 = 3$			rU					

→ "Table-wind pressure-panel name.txt"

number = colour group as well as info on deflection here: colour group II; deflection is taken into account Consecutively the allowable span table for the example with load case wind suction:



→ "Table-wind suction-panel name.txt"

number = colour group as well as info on deflection here: colour group II; deflection is staken into account

Note: for the lifting load types (wind suction), the support widths are printed in the result tables, even if they are not decisive for this load type and are not listed in the support width tables.